Horoscopul zilei

Leu
(23 Iulie - 22 August)


E posibil sa primesti un pont de cum sa faci niste bani foarte usor. Te vei gandi apoi la cum o sa cheltuiesti banii pe care crezi ca ii vei obtine.

› vrei zodia ta

Cultura generala

Pleoapele si genele au rolul de protectie a ochilor.

› vrei mai mult

Bancul zilei

La sectia de politie, vine un barbat alergand si strigand:
- Domnule politist, te rog, aresteaza-ma imediat, inchide-ma!
- Dar ce s-a intamplat?
- Am tras cu pistolul in soacra-mea. Patru cartuse!
- Ai omorat-o?!
- Nu, din pacate nu am atins-o. De aceea, va rog, bagati-ma intr-o celula, repede!

› vrei mai mult
Evaluare Nationala | Bacalaureat | Subiecte Examen | Forum | Arhiva | Referate

home : Invatamant : Bacalaureat : Modele_de_subiecte_Bacalaureat : Probe_scrise


Matematica
BACALAUREAT 2013



Model_Bac_2013_E_c_matematica_M_tehnologic_barem

Varianta de download:
Tip fisier: pdf
Marime: 110141 bytes

Created by BCL easyConverter SDK 3 (HTML Version)

Ministerul EducaNiei, Cercetarii, Tineretului i Sportului

Centrul NaNional de Evaluare i Examinare

Examenul de bacalaureat naNional 2013

Proba E. c)

Matematica M_tehnologic

Barem de evaluare i de notare

Model

Filiera tehnologica: profilul servicii, toate calificarile profesionale; profilul resurse, toate calificarile profesionale; profilul tehnic, toate calificarile profesionale

Pentru orice soluNie corecta, chiar daca este diferita de cea din barem, se acorda punctajul corespunzator.

Nu se acorda fracNiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvari parNiale, în limitele punctajului indicat în barem.

Se acorda 10 puncte din oficiu. Nota finala se calculeaza prin împarNirea la 10 a punctajului total acordat pentru lucrare.

 

SUBIECTUL I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(30 de puncte)

 

 

1.

 

9x2 +12x = 0

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

 

x = 0 sau x = -

4

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

-

b

=

3m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3m

=

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1p

 

 

3.

 

 

2x

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

3

 

= 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x = 2 x =1

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

C2

= 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2

= 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5C2

 

- A2

 

=10

 

 

 

 

 

 

 

 

 

 

 

1p

 

 

 

4

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

 

C mijlocul lui (AB) xC

=

xA + xB

i yC

=

yA + yB

 

1p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

xC = -2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

yC = 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

 

m(BAD) = 60

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

ABD este echilateral

 

 

 

 

 

 

 

 

1p

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

BD = 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUBIECTUL al II-lea

 

 

 

 

 

 

 

 

(30 de puncte)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.a)

 

 

 

 

 

 

 

 

 

-1

2

1

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

1 =

 

 

2

 

 

-1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)

 

 

 

(x) = 2+ 2 x2 + 2 x2 + x2 + x2 -8

 

 

 

 

3p

 

 

 

 

Finalizare

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)

 

 

 

(0) = -6

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4

0

 

 

 

 

 

 

 

 

 

 

 

 

(A(

0))

 

-1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

4 2 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

3

 

 

 

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.a)

 

 

 

 

 

 

 

 

3

 

 

 

2

+ a 1+ b

 

 

 

 

 

 

 

 

3p

 

 

 

 

f (1) =1

 

-1

 

 

 

 

 

 

 

 

 

 

Proba scrisa la matematica M_tehnologic

 

 

 

 

 

 

Model

 

Barem de evaluare i de notare

Filiera tehnologica: profilul servicii, toate calificarile profesionale; profilul resurse, toate calificarile profesionale; profilul tehnic, toate calificarile profesionale

1

Ministerul EducaNiei, Cercetarii, Tineretului i Sportului

Centrul NaNional de Evaluare i Examinare

 

 

a + b = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

b)

f = X

3

- X

2

- X

+1

f =

(

 

X -1

2

(

X +1

 

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finalizare: x1 =1, x2 =1, x3 = -1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

c)

f (1) = 0 a + b = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1p

 

 

 

f (2) = 0 2a + b = -4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

Finalizare:a = -4, b = 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUBIECTUL al III-lea

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(30 de puncte)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.a)

f '(x) =1 ln x + x

1

 

pentru orice x (0,+ 8)

 

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

Finalizare

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)

f '(x) = 0 x =

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f '(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

= 0 pentru orice

 

x

 

 

 

,

+ 8

 

f crescatoare pe intervalul

 

 

 

,

+ 8

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

c)

f '(x)

= 0 pentru orice

 

x

 

 

 

1

 

 

f

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

0,

 

 

 

 

 

descrescatoare pe intervalul

0,

 

 

 

3p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

Din tabelul de variaNie al funcNiei obNinem f (x)=

1

 

= -

1

pentru orice x (0,+8)

 

 

 

 

 

f

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

e

 

 

 

 

 

 

 

 

 

 

2.a)

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

'

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F '(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

x -

 

+ ln x

 

=1+

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F este derivabila pe (0,+ 8) i

 

F ' = f

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x f

(x2 )dx =

1

f (x2 ) 2xdx =

1

 

 

f (t)dt =

 

 

 

 

 

 

 

 

 

 

 

 

 

3p

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

e2

1

 

 

2

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

-

 

+ lnt

 

 

 

=

 

-

 

 

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

t

 

 

 

2

 

 

 

 

e2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)

a

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x)

 

-

 

 

dx =

x

-

 

 

 

 

 

 

= a -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

x

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a -

1

=

3

a = 2 sau a = -

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1p

 

 

 

Finalizare: a = 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proba scrisa la matematica M_tehnologic Model Barem de evaluare i de notare

Filiera tehnologica: profilul servicii, toate calificarile profesionale; profilul resurse, toate calificarile profesionale; profilul tehnic, toate calificarile profesionale

2